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ABSTRACT. Objective. Heart period variability has been

considered for clinical assessment of autonomic function,

determining the presence of haemorrhage or disease states, and

for predicting mortality from traumatic injury. However, for

heart period variability to be clinically useful, a number of

important methodological issues should be addressed, including

the minimum number of R–R intervals (RRI) required for

accurate derivation, and the reproducibility of these

metrics. Methods. ECGs were recorded for ‡10 min in 18

resting, supine subjects (12 M/6 F; 19–55 years). Heart period

variability analyses included 21 time, frequency and complexity

domain metrics. For assessment of minimum RRIs required,

measurements were made from ECG recordings of 5 min down

to 30 s for time and frequency domain metrics, and from 800

RRIs down to 100 RRIs for complexity metrics, by methodical

truncation of the data set. Inter-subject variability was assessed

by calculating the range and co-efficient of variation (%CV)

across all subjects. Two independent 30 s or 100 RRI ECG

segments were used to assess intra-subject variability via

calculation of %CV in each subject. Results. Six time and

frequency domain metrics were robust down to 30 s of data,

while five complexity metrics were robust down to 100 RRIs.

All time and frequency domain metrics (except for RRI)

exhibited high inter-subject variability (CVs ‡ 30.0%), while

five of eleven complexity metrics displayed low inter-subject

variability (CVs £ 8.5%). In the assessment of intra-subject

variability in metrics valid with 30 s or 100 RRIs of ECG, only

one time domain and four complexity metrics had CVs

< 10%. Conclusions. Metrics that are highly reproducible

and require few RRIs are advantageous for patient monitoring

as less time is required to assess physiological status and initiate

early interventions. Based on our analyses from healthy, resting

humans, we have identified a select cohort of heart period

variability metrics that performed well in regards to these two

criteria.

KEY WORDS. heart rate, heart period variability, ECG,

electrocardiography, reliability and validity, reproducibility of

results, reference values.

INTRODUCTION

Since Hon and Lee’s observations in the 1960s that a
reduction in R–R interval (RRI) variability preceded
other signs of fetal distress [1], heart period variability has
been extensively reported in the literature, with consid-
eration given to a wide variety of potential clinical
applications, including the assessment of autonomic
function [2], myocardial infarction risk stratification [3],

Data contained in this manuscript was presented at the Experi-
mental Biology Meeting in San Diego, CA in April 2008.

From the 1Department of Health and Kinesiology, University of
Texas at San Antonio, San Antonio, TX 78249, USA; 2US Army
Institute of Surgical Research, 3400 Rawley E Chambers Avenue,
Building 3611, Fort Sam Houston, TX 78234-6315, USA.

Received 21 August 2009. Accepted for publication 2 November
2009.

Address correspondence to C. A. Rickards, US Army Institute of
Surgical Research, 3400 Rawley E Chambers Avenue, Building
3611, Fort Sam Houston, TX 78234-6315, USA.
E-mail: caroline.rickards@us.army.mil

Journal of Clinical Monitoring and Computing (2010) 24:61–70

DOI: 10.1007/s10877-009-9210-z � Springer 2009



Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number. 

1. REPORT DATE 
01 FEB 2010 

2. REPORT TYPE 
N/A 

3. DATES COVERED 
  -   

4. TITLE AND SUBTITLE 
Characterization of common measures of heart period variability in
healthy human subjects: implications for patient monitoring 

5a. CONTRACT NUMBER 

5b. GRANT NUMBER 

5c. PROGRAM ELEMENT NUMBER 

6. AUTHOR(S) 
Rickards C. A., Ryan K. L., Convertino V. A., 

5d. PROJECT NUMBER 

5e. TASK NUMBER 

5f. WORK UNIT NUMBER 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 
United States Army Institute of Surgical Research, JBSA Fort Sam
Houston, TX 78234 

8. PERFORMING ORGANIZATION
REPORT NUMBER 

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S) 

11. SPONSOR/MONITOR’S REPORT 
NUMBER(S) 

12. DISTRIBUTION/AVAILABILITY STATEMENT 
Approved for public release, distribution unlimited 

13. SUPPLEMENTARY NOTES 

14. ABSTRACT 

15. SUBJECT TERMS 

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 
ABSTRACT 

UU 

18. NUMBER
OF PAGES 

11 

19a. NAME OF
RESPONSIBLE PERSON 

a. REPORT 
unclassified 

b. ABSTRACT 
unclassified 

c. THIS PAGE 
unclassified 

Standard Form 298 (Rev. 8-98) 
Prescribed by ANSI Std Z39-18 



and the prediction of sepsis [4]. In the ICU setting,
researchers from the University of California [5, 6] and
Vanderbilt University Medical Center [7–10] have dem-
onstrated the potential utility of heart period variability for
predicting mortality in large cohorts of trauma patients,
many hours prior to death.

Recently, the potential utility of heart period variability
measures as indicators of blood volume loss, injury severity
and/or the requirement for life saving interventions in
trauma patients, particularly in the pre-hospital setting, has
become a focus of research conducted at our institute. In
two studies using ECG signals collected in the field [11,
12], measures of heart period variability (specifically, the
high frequency to low frequency ratio of RRI oscillations)
were able to distinguish between trauma patients who
lived and those who eventually died (up to 19 h later)
when standard vital signs (i.e., heart rate, arterial blood
pressure and oxygen saturation) were indistinguishable.
Similarly, trauma patient mortality was associated with a
number of heart period complexity metrics (e.g., sample
entropy, fractal dimension by dispersion analysis, detr-
ended fluctuation analysis) measured from ECG signals
collected pre-hospital [13]. Most recently, heart period
variability metrics were used to distinguish trauma patients
who received a life saving intervention within 24 h of
injury (and who concomitantly sustained more severe
injuries) from those who did not [14].

As early diagnosis and intervention are associated with
improved patient outcomes [15], the requirement for
extended, stable and clean ECG signals [e.g., 800 RRIs
for heart period complexity metrics [16], and 5 min for
time and frequency domain metrics [17]], can represent a
significant limitation for the use of these metrics in the
emergency care environment. In a trauma patient with a
heart rate of 100 beats per minute, 800 RRIs of data
equates to waiting 8 min for the first measurement, and
even longer to implement the required intervention.
Under conditions of lower heart rates, this time can ex-
tend to over 10 min. Additionally, patient movement, the
presence of interference and ectopy [18], treatment/
interventions occurring during the ECG collection peri-
od, and/or rapidly changing physiological status in se-
verely injured patients, make it difficult to ensure a stable
ECG signal over a prolonged period of time (i.e., for 800
RRIs). These criteria have practical implications for
measurements in the field, as rapid treatment and triage
decisions are often required, particularly in the combat
setting.

Finally, the inter- and intra-subject variability (i.e.,
reproducibility) may be too high for clinical application of
some heart period variability metrics [19–22]. Identifica-
tion of those metrics with low intra- and inter-subject
variability would be desirable as small but predictable

changes in these measurements with changing physio-
logical status could be detected early. Similarly, if these
measures could be acquired more rapidly, this could en-
able continuous tracking of responses and provide a faster
answer for subsequent triage and treatment decisions.

In this investigation, we were interested in focusing on
two important methodological issues in the analysis of
common linear and non-linear indices of heart period
variability that are critical to early diagnosis and inter-
vention: the minimum time/beats required for accurate
derivation, and the inter-subject and intra-subject vari-
ability of these measures.

METHODS AND MATERIALS

Subjects

Eighteen (12 male, 6 female) healthy, normotensive, non-
smoking subjects (Mean ± SD; age, 29 ± 10 years (Range,
19–55 years); height, 171 ± 12 cm; weight, 76 ± 16 kg)
volunteered to participate in studies conducted at the US
Army Institute of Surgical Research, Fort Sam Houston,
TX from which data have been extracted for this study.
All experimental procedures and protocols were reviewed
and approved by the Institutional Review Board of the
Brooke Army Medical Center, Fort Sam Houston, TX. A
complete medical history and physical examination was
obtained on each of the potential subjects prior to being
approved for testing. Female subjects underwent a urine
pregnancy test within 24 h prior to experimentation, and
were excluded from the study if pregnant. Subjects were
instructed to maintain their normal sleep pattern and re-
frain from exercise, alcohol, and autonomic stimulants
such as caffeine and other non-prescription drugs 24 h
prior to testing to reduce their potential acute effects on
cardiovascular responsiveness. During a familiarization
session that preceded each experiment, subjects received a
verbal briefing and a written description of all procedures
and risks associated with the experiments and were made
familiar with the laboratory, the protocol, and procedures.
Each subject gave their written informed consent to
participate in the study.

Study design

All subjects were instrumented for the non-invasive
measurement of RRIs via a standard lead II ECG. Fol-
lowing instrumentation, subjects lay quietly in the supine
posture for at least 10 min (Range: 14–40 min), and an
ECG was recorded continuously. Breathing rate was not
controlled.
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Data analysis

Continuous ECG was interfaced with an analogue-to-
digital converter, and then recorded directly to a com-
puter-based data acquisition software package (WinDAQ,
Dataq Instruments, Akron, OH) at a sampling frequency
of 500 Hz. All ECG waveforms were imported into data
analysis software (WinCPRS, Absolute Aliens, Turku,
Finland). R waves generated from the ECG signals were
detected and marked at their occurrence in time. All ECG
signals were manually scanned for noise, ectopy or aber-
rant beats. Two out of an original 20 ECG waveforms
were removed from analysis due to the presence of >1
ectopic beat; two waveforms contained only 1 ectopic
beat, which were subsequently interpolated and used for
analysis; no waveforms contained other noise or inter-
ference. The measurements of heart period variability
made from each ECG recording are briefly outlined in
Table 1; further information, including more detailed
definitions for these metrics, can be found in the cited
references in this table.

Data length reduction

By methodical truncation of the data set, the aforemen-
tioned measurements were made from the same ECG
recording using 800, 700, 600, 500, 400, 300, 200, 150
and 100 RRIs for heart period complexity metrics, and
5 min, 4 min, 3 min, 2 min, 1 min and 30 s for time and
frequency domain metrics. If the ECG recording con-
tained more than 800 RRIs or was longer than 5 min, the
final 800 RRIs or final 5 min were used for analysis. Data
truncation was achieved by anchoring the final time point
and moving the initial time point to systematically reduce
the number of RRIs or time included for analysis. To
assess the effect of data length reduction, a one-way re-
peated measures analysis of variance was used for each
metric by comparing each level with a beat length ac-
cepted in the literature for that value—the ‘‘reference
value’’ (i.e., 5 min for time and frequency domain met-
rics; 800 RRIs for heart period complexity metrics).
Tukey post-hoc tests were used to determine the ‘‘break-
point’’ i.e., where the metric was first statistically different
from the 800 RRI (for complexity) or 5 min (for time
and frequency domain) reference value. A representative
illustration of this technique is presented in Figure 1 using
approximate entropy as an example.

Inter-subject variability

The ECG records of the 18 subjects were used to assess
the inter-subject variability of each of the metrics of

interest. All time and frequency domain metrics were
assessed using values from 5 min of data, while values
from 800 RRIs were used for all heart period complexity
metrics. The mean, standard deviation, range and coeffi-
cient of variation (%CV) were calculated for each metric
using both the reference value and the minimum value.

Intra-subject reproducibility

Intra-subject reproducibility was assessed for all metrics
that were valid with the minimum ECG length deter-
mined from the data length reduction analysis (i.e., 30 s or
100 RRIs). To ensure the two measurements were
independent, the second ECG segment was contained
outside the original ECG recording. Individual %CV
values between the two independent ECG segments were
calculated for each subject, and the mean %CV value for
the total pool of subjects was calculated. The difference
between the two measurements was also calculated and
averaged across all subjects.

RESULTS

Only four heart period variability metrics (FD-L, FD-DA,
SymDyn and DisnEn) met all three ideal criteria defined
in this study; (1) only 100 RRIs or 30 s of ECG required
for accurate derivation; (2) inter-subject variability CV
< 10%; and, (3) intra-subject reproducibility CV < 10%.

Data length reduction

Table 2 provides a summary of the results of the data
length reduction analysis. Eight time and frequency do-
main metrics were robust down to 30 s of data compared
with the 5 min reference value. One caveat to this anal-
ysis, however, is the mathematical limitation of using only
30 s of data for the frequency domain metrics (i.e., RRI-
HF and RRI-LF); at least 10 times the wavelength of the
lowest frequency within the range of interest is recom-
mended for accurate derivation of these metrics [17]. Ten
cycles equates to a minimum of 67–250 s (1.1–4.2 min) of
data for the LF range (0.04–0.15 Hz) and 25–67 s of data
for the HF range (0.15–0.4 Hz). As such, 4 min was used
as the minimum for RRI-LF and 1 min was used as the
minimum for RRI-HF, despite the numerical values
being statistically valid down to 30 s. Of the complexity
metrics assessed, five (SampEn, FD-L, FD-DA, SymDyn
and DisnEn) were not significantly altered when truncated
from 800 RRIs to 100 RRIs (P ‡ 0.24). StatAv, a mea-
sure of signal stationarity, decreases as the signal becomes
more stationary [23]. Indeed, in this study, StatAv pro-
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gressively decreased as the length of data was reduced,
from 0.61 ± 0.08 with 800 RRIs to 0.48 ± 0.20 with 100
RRIs, indicating greater stationarity of the shorter ECG
segments.

Inter-subject variability

All of the time and frequency domain metrics, except for
RRI, exhibited relatively high inter-subject variability
with CVs ranging from 31.0% (SD2/SD1) to 84.5%
(RRI-LF) with 5 min of data (Table 2). These high CVs
are also reflected in the large ranges for each of these
metrics (Table 2). By comparison, five complexity metrics
had CVs > 10% with 800 RRIs of data, while all other
complexity metrics displayed low inter-subject variability
with CVs ranging from 3.1% (FD-L) to 8.5% (ApEn).
Generally, in those metrics that demonstrated high vari-
ability (>10% CV) with the reference ECG length,
variability further increased as the ECG length decreased
(Table 2). In those metrics that demonstrated low vari-
ability (i.e., <10% CV) with the reference ECG length,
reduction of the dataset length to the minimum relevant

Table 2. Minimum time or number of R–R intervals (RRIs) required for common heart period variability metrics (N = 18)

Variable Reference time or RRIs Minimum time or RRIs

Data Mean SD Range CV (%) Data Mean SD Range CV (%)

RRI, ms 5 min 946 109 701–1,162 11.5 30 s 932 126 675–1,163 13.5

RRISD, ms 5 min 73 27 35–127 37.0 2 min 68 27 28–116 39.8

RMSSD, ms 5 min 60 27 18–97 44.2 30 s 60 31 13–105 52.1

pNN50, % 5 min 32 21 0.9–69 66.8 30 s 33 26 0–83 76.5

LF, ms2 5 min 1,577 1,332 176–4,431 84.5 4 min 1,530 1,251 165–3,691 81.8

HF, ms2 5 min 1,049 760 84–2,581 72.5 1 min 1,118 908 86–3,023 81.2

CDM LF 5 min 41 19 16–88 46.0 30 s 47 28 17–92 59.4

CDM HF 5 min 36 15 11–61 43.9 30 s 39 21 6–82 53.6

SD1 5 min 43 19 13–69 44.5 30 s 43 22 9–74 52.0

SD2 5 min 93 36 47–167 38.0 2 min 85 37 36–154 43.3

SD2/SD1 5 min 2.4 0.8 1.2–3.7 31.0 1 min 2.3 0.9 0.9–4.2 40.3

ApEn 800-RRIs 1.38 0.12 1.15–1.61 8.5 700-RRIs 1.35 0.10 1.13–1.54 7.6

SampEn 800-RRIs 1.59 0.24 1.15–2.14 15.2 100-RRIs 1.70 0.38 1.10–2.35 22.1

LZEn 800-RRIs 0.82 0.09 0.65–0.95 11.0 200-RRIs 0.88 0.12 0.57–1.03 13.8

FD-L 800-RRIs 1.84 0.06 1.73–1.95 3.1 100-RRIs 1.81 0.11 1.61–1.95 6.2

FD-DA 800-RRIs 1.26 0.08 1.13–1.43 6.1 100-RRIs 1.24 0.11 1.08–1.40 8.5

SymDyn 800-RRIs 0.78 0.06 0.69–0.92 7.2 100-RRIs 0.76 0.07 0.64–0.88 8.6

DisnEn 800-RRIs 4.7 0.3 4.2–5.5 7.2 100-RRIs 4.6 0.4 3.8–5.3 8.6

% FW 800-RRIs 32 10 9–48 30.3 500-RRIs 36 10 11–52 27.7

DFA Short 800-RRIs 1.08 0.22 0.60–1.42 20.2 300-RRIs 1.03 0.29 0.40–1.64 28.4

DFA Long 800-RRIs 0.86 0.11 0.67–1.08 12.6 200-RRIs 0.77 0.16 0.48–1.05 21.3

All metrics compared with a reference ECG length, commonly accepted in the literature.

Fig. 1. Representative tracing of methodological approach for the assessment
of minimum R–R interval requirements. The ‘‘break-point’’ represents
where the heart period variability metric was first statistically distinguishable
from the reference value (*), i.e., 800 beats for complexity metrics, and
5 min for time and frequency domain metrics.
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to each metric kept variability below 10%, even in metrics
that were robust with 100 RRIs (FD-L, FD-DA, Sym-
Dyn and DisnEn).

Intra-subject reproducibility

Only those metrics that were valid with a minimum of
100 RRIs or 30 s were used for the assessment of intra-
subject reproducibility. As the second ECG segment was
contained outside the original ECG recording of 800
RRIs, one subject did not have sufficient data (i.e., <900
RRIs) for this analysis, therefore N=17. Of the 11 heart
period variability metrics assessed, 5 had an intra-subject
CV < 10% (Table 3). The metric with the lowest intra-
subject variability was FD-L (mean CV, 4.2%), while
CDM-LF exhibited the highest variability (mean CV,
28.0%).

DISCUSSION

Metrics that require a short time frame for accurate
assessment of patient status are advantageous for a number
of important reasons: (1) they facilitate rapid triage and
treatment; (2) multiple measurements can be collected
quickly to allow trending over time, enabling a more
accurate assessment of injury severity; (3) changes in pa-
tient status can be identified quickly, including the effect
of treatments/interventions (e.g., tourniquet application,
fluid resuscitation); and, (4) the influence of interference
from noise, patient movement and interventions can be
minimized. In fact, the probability of Stationarity (a

technical requirement for most of these metrics) improves
as the number of beats needed for analysis decreases [24,
25]; this was confirmed in the current study. Within this
context, we examined a number of commonly used heart
period variability metrics to determine their reproduc-
ibility and minimum data requirements for potential
application to the assessment of patient status. We found
that the minimum RRIs or time required for many of
these metrics was well below accepted reference values
from the literature. Five heart period complexity metrics
were still valid using 100 consecutive RRIs, compared
with the accepted reference value in the literature of 800
RRIs (e.g., [16]). Similarly, while 5 min has been rec-
ommended for the calculation of time and frequency
domain metrics [17], six of these parameters were also
robust with 30 s of data.

The impact of reducing the number of RRIs on the
calculation of heart period variability metrics in resting,
healthy individuals has been assessed in very few investi-
gations. The most comprehensive analysis to date, assessing
numerous time, frequency and complexity metrics, is
limited by the use of ambulatory recordings, which intro-
duces uncontrolled variability into the analysis [17, 26].
The findings of other studies are also limited by; assessing
only one or two metrics [27], using very few discrete time
periods [28], or using data from patient populations that
may also be influenced by uncontrollable variability (i.e.,
underlying medical conditions and/or interventions) [29,
30]. The current study is unique as we systematically as-
sessed progressive, step-wise reductions in data length on an
extensive number of heart period variability metrics from
healthy, stationary subjects under stringent, experimentally
controlled conditions.

Table 3. Intra-subject reproducibility for heart period variability metrics using minimum data requirements (N=17)

Variable Data

(time/RRIs)

Time 1 Time 2 Difference b/w

Time 1 &

Time 2

Mean (Range)

CV (%)

Mean (Range)

RRI (ms) 30 s 932 ± 126 953 ± 107 26.8 (-44 to +125) 3.0 (0.4–9.8)

RMSSD (ms) 30 s 59 ± 31 54 ± 28 -4.6 (-32 to +14) 11.5 (0.0–32.3)

pNN50 (%) 30 s 32 ± 25 32 ± 23 0.5 (-14 to +22) 20.9 (0.0–141.4)

CDM LF 30 s 45 ± 27 43 ± 29 -2.2 (-62 to +64) 28.0 (0.0–71.9)

CDM HF 30 s 38 ± 21 33 ± 19 -4.9 (-33 to +20) 16.0 (0.0–52.4)

SD1 30 s 41 ± 22 38 ± 20 -3.3 (-23 to +10) 11.7 (0.00–32.9)

SampEn 100-RRIs 1.68 ± 0.38 1.75 ± 0.37 0.07 (-0.60 to +0.76) 14.4 (0.5–33.2)

FD-L 100-RRIs 1.80 ± 0.11 1.88 ± 0.11 0.08 (-0.14 to +0.26) 4.2 (0.1–9.9)

FD-DA 100-RRIs 1.24 ± 0.11 1.33 ± 0.16 0.09 (-0.22 to +0.38) 8.9 (0.8–18.9)

SymDyn 100-RRIs 0.76 ± 0.06 0.79 ± 0.05 0.04 (-0.04 to +0.16) 4.4 (0.6–16.1)

DisnEn 100-RRIs 4.54 ± 0.39 4.76 ± 0.27 0.22 (-0.26 to +0.98) 4.4 (0.6–16.1)

Two independent data sets were used for analysis. Mean ± SD, unless otherwise stated.
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We also focused on assessing inter- and intra-subject
variability to determine the degree of confidence that
could be placed on using these metrics for clinical diagnosis
at any specific point in time. In consensus with a number
of previous studies [19, 21, 22, 31], our analysis revealed
that many heart period variability metrics demonstrate very
high inter-subject variability and very poor reproducibil-
ity, even under the most controlled experimental condi-
tions in resting, healthy individuals. In particular, the
investigated time domain and frequency domain metrics
and many of the complexity metrics showed very high
variability between subjects. This finding has practical
implications for monitoring patient status; it is unlikely that
a standard ‘‘normal’’ range can be established in healthy
humans (as for blood pressure or base excess, for example),
so it may be difficult to determine when a patient is
deviating from normality as an indicator of injury status.

There were four heart period variability metrics that
performed well under all desired criteria. FD-L, FD-DA,
SymDyn and DisnEn required only 100 RRIs for accurate
derivation, and exhibited relatively low variability be-
tween subjects and high reproducibility over time. These
metrics could potentially be targets for monitoring patient
status, although continued assessment is required regarding
their ability to reliably and predictably track the progres-
sion of illness and/or the severity of injury in individual
patients. A single, ‘‘snap-shot’’ measurement is unlikely to
provide this kind of sensitivity in a dynamic clinical setting.
Importantly, heart period variability will decrease purely as
a mathematical consequence of an increase in heart rate
[32]. As such, application of these metrics to patient
monitoring must take into account the impact of other
external stimuli, such as pain, anxiety and activity status
(e.g., [33]) that will decrease R–R intervals (reflected in an
increased heart rate) and heart period variability, but not
necessarily due to the underlying injury.

Importantly, the results of this investigation represent
the best case scenario by using spontaneously breathing,
healthy, conscious, quietly resting humans in a controlled
laboratory setting. We aimed to reduce much of the
variability inherent in many studies of patient populations
and interventional experiments, as discussed by Sander-
cock et al. [21]. In fact, when we applied these same
techniques to a set of ECG signals collected from trauma
patients in the pre-hospital setting (N=161), our results
were very different to the current study, particularly in
regards to the minimum number of RRIs required and
inter-individual variability (unpublished observations).
For example, SampEn required a minimum of 500 RRIs
in trauma patients compared with 100 RRIs in healthy
subjects, and the variability of ApEn increased from 8.5%
CV in healthy subjects to 18.3% CV in trauma patients.
Similarly, in a recent study on pre-hospital trauma pa-

tients, FD-DA calculated from 800 RRIs could distin-
guish survivors from non-survivors, but could not
distinguish the two groups when calculated with 100
RRIs [30], despite 100 RRIs being sufficient for accurate
derivation of FD-DA in the current study. Furthermore,
there were discrepancies in the ability of some metrics to
consistently distinguish the two patient groups as the
number of RRIs decreased; one metric separated the
groups with 800 RRIs and 100 RRIs, but not with 600,
400 or 200 RRIs [30]. These disparities are likely due to a
number of factors associated with the trauma patient set-
ting including; the possibility of treatment/interventions
occurring during the ECG collection period, or; unstable/
non-stationary ECG signals due to ectopy, patient
movement and/or underlying pathophysiology [18]. This
highlights the need to ensure well controlled experimental
conditions when determining standards of measurement.
In comparison with published studies where values are
reported in healthy, resting subjects from short-term
recordings, our results compare favourably for most heart
period complexity metrics (Table 4). Conversely, there
was wide variability in the average values for most time
domain and frequency domain metrics compared with the
literature, a finding that is not surprising considering the
high inter-subject variability and low reproducibility of
these metrics just within our group of subjects.

While there have been numerous studies assessing the
reliability and validity of many time and frequency do-
main metrics of heart period variability in healthy humans
[19, 28, 31, 34–39], including a thorough review of the
literature [21], there are limited studies on complexity
metrics. Maestri et al. [22] recently published one of the
only studies assessing these issues in a set of eleven non-
linear heart period variability metrics (including three
complexity metrics reported in our analysis), concluding
that there are wide differences in the reliability of each
variable of interest. Intra-class correlation coefficients
(ICC) ranged between 0.18 and 0.78 for the 2, 5 min
measurements separated by 1-day, indicating poor to
moderate reliability [22]. We calculated %CVs rather than
ICCs, and found very high reliability among most com-
plexity measurements that were valid with 100 RRIs of
data, with only one falling outside our criteria of 10% CV.
While the use of ICCs and %CVs are both appropriate
methods for reliability testing [21], the choice between
these tests depends on the heterogeneity of data set [40].
Hopkins [40] specifically outlines the limitation of using
retest correlation as a measure of reliability as it is sensitive
to the spread of the data between subjects, i.e., retest
correlations on homogenous data can yield inaccurately
low reliability measurements. By comparison, typical er-
ror (e.g., CV) is insensitive to the heterogeneity of the
data [40]. For accuracy and consistency across all metrics,
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Table 4. Comparison of values from current study with published values from short-term recordings in healthy, resting humans

Variable Current study Recording

length

Literature value Recording

length

Reference

(Mean ± SD) (Mean ± SD)

RRI, ms 946 ± 109 5 min 953 ± 123a 5 min Lee et al. [34]

927 ± 173a 5 min Marks and Lightfoot [28]

910 ± 115 5 min Pinna et al. [19]

906 ± 115 5 min Maestri et al. [22]

971 ± 124a 800 beats Kuusela et al. [16]

RRISD, ms 73 ± 27 5 min 62 ± 34a 5 min Lee et al. [34]

74 ± 55a 5 min Marks and Lightfoot [28]

48 ± 16 5 min Pitzalis et al. [37]

43 ± 17 5 min Pinna et al. [19]

84 ± 30a 800 beats Kuusela et al. [16]

RMSSD, ms 60 ± 27 5 min 31 ± 13 5 min Salo et al. [35]

32 ± 18 5 min Pitzalis et al. [37]

34 ± 23 5 min Pinna et al. [19]

85 ± 34a 800 beats Kuusela et al. [16]

pNN50, % 32 ± 21 5 min 8 ± 8 5 min Pitzalis et al. [37]

16 ± 18 5 min Mourot et al. [51]

50 ± 23a 800 beats Kuusela et al. [16]

LF, ms2 1,577 ± 1,332 5 min 637 ± 524a 5 min Lee et al. [34]

687 ± 583 5 min Pinna et al. [19]

HF, ms2 1,049 ± 760 5 min 1,158 ± 1,350a 5 min Lee et al. [34]

468 ± 542 5 min Pinna et al. [19]

CDM LF 41 ± 19 5 min 32 ± 10 4 min Hayano et al. [45]

CDM HF 36 ± 16 5 min 48 ± 17 4 min Hayano et al. [45]

SD1 43 ± 19 5 min 54 ± 31 256 beats Gilder and Ramsbottom [52]

30 ± 19 5 min Mourot et al. [51]

SD2 93 ± 36 5 min 89 ± 43 256 beats Gilder and Ramsbottom [52]

61 ± 27 5 min Mourot et al. [51]

SD2/SD1 2.4 ± 0.8 5 min 2.8 ± 1.2 5 min Maestri et al. [22]

ApEn 1.38 ± 0.12 800 beats 1.0 ± 0.1 10 min Tulppo et al. [53]

1.38 ± 0.06a 800 beats Kuusela et al. [16]

SampEn 1.59 ± 0.24 800 beats 2.0 ± 0.4 5 min Maestri et al. [22]

1.63 ± 0.11a 800 beats Kuusela et al. [16]

LZEn 0.82 ± 0.09 800 beats 0.7 ± 0.1 5 min Maestri et al. [22]

0.76 ± 0.08a 800 beats Kuusela et al. [16]

FD-L 1.84 ± 0.06 800 beats 1.62 ± 0.06 15 min Jartti et al. [54]

1.92 ± 0.03a 800 beats Kuusela et al. [16]

FD-DA 1.26 ± 0.08 800 beats 1.19 ± 0.05a 800 beats Kuusela et al. [16]

StatAv 0.61 ± 0.08 800 beats 0.57 ± 0.08a 800 beats Kuusela et al. [16]

SymDynb 0.78 ± 0.06 800 beats – – –

DisnEn (BPW) 4.67 ± 0.33 800 beats 4.27 ± 0.24a 800 beats Kuusela et al. [16]

% FW 32 ± 10 800 beats 27 ± 10a 800 beats Kuusela et al. [16]

DFA short 1.08 ± 0.22 800 beats 1.2 ± 0.3 5 min Maestri et al. [22]

1.0 ± 0.2 10 min Tulppo et al. [53]

1.01 ± 0.06 600 beats Heffernan et al. [55]

DFA longc 0.86 ± 0.11 800 beats 0.76 ± 0.08 2 h Schmitt and Ivanov [56]

0.998 ± 0.124 8,192 beats (�2 h) Peng et al. [50]

aPaced breathing protocol. bNo data found in the literature. c2 h was the shortest recording available in the literature.

68 Journal of Clinical Monitoring and Computing



regardless of their heterogeneity, we chose to use %CVs
for the assessment of reliability, an approach also used in a
recent study of frequency domain metrics [39]. This
finding further underscores the importance of indepen-
dently assessing the reliability and validity of metric/s that
may be considered for analysis [21].

Limitations

Respiration rate is known to affect the calculation of
many heart period variability metrics [41] (e.g., RRI-
HF). As we did not control respiration rate, it is possible
that the high inter- and intra-subject variability in many
of the metrics in the current study was associated with
the variable breathing patterns of the subjects. However,
controlling respiration was not a practical approach for
this analysis as it would be difficult to apply these
findings to the clinical setting where patients breathe
spontaneously. Despite this, however, a number of heart
period complexity metrics demonstrated very low inter-
and intra-subject variability, further indicating their po-
tential suitability in this setting, regardless of respiration
rate.

Conclusions

In this study we comprehensively assessed the potential
methodological limitations of a range of heart period
variability metrics, encompassing the general categories of
time, frequency and complexity domains. By assessing the
minimum data length requirements, inter-subject vari-
ability and intra-subject reproducibility, we were able to
identify four non-linear metrics (FD-L, FD-DA, SymDyn
and DisnEn) that could become candidates for monitoring
patients in the pre-hospital and in-hospital settings.
Importantly, however, the utility of any ECG-derived
parameter for reliable diagnosis, outcome prediction, or
risk stratification of patients must be addressed prior to
application to medical monitoring technology.
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